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Abstract 

1,3-Dipolar cycloaddition of 2-diazopropane 2 to conjugateddi-substituted alkenes1 is taking 

place regiospecifically to give five membered heterocyclic ring 3. The oxidation of 2-

pyrazolines 3a,b with dimethylsulfoxide and oxalyl chloride under Swern conditions led to a 

pyrazolenines 5a,b. 
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1. Introduction 

For ten years, the development of new heterocyclic synthesis methods for the research of 

biologically active molecules has created a growing need for more complex and varied 

compounds. In this context, heterocyclic chemistry has emerged as a solution for quickly 

reaching a large number of potentially active products. The cycloaddition reactions of the 

diazoalkanes with various dipolarophiles have therefore established themselves as an 

appropriate tool for meeting these requirements. 

Considerable attention has been focused on pyrazoline derivatives due to their interesting 

biological activities I.  

 

They have several prominent effects such antidepressant activity during screening against 

monoamine oxidases II, as antagonists III, antiviral activity against the West Nile virus IV, and 

multidrug resistance modulators in tumor cells V. Pyrazoles are very powerful reagents for the 

preparation of nitrogen containing substance VI. Among the other methods used in the synthesis 

of pyrazolines is the 1,3-dipolar cycloaddition of nitrilimines VII-XI. The oxidation of pyrazoline 

derivatives is, in fact, the pyrazolenines which applies to many synthetic strategies. A large 

number of methods are found in the literature for achieving this basic setup. Many reagents are 

available for the preparation of pyrazolines, the nature of the product depending on the choice 

http://heteroletters.org/


 

 

N.B.Hamadi et al. / Heterocyclic Letters Vol. 11| No.1|25-29|Nov-Jan|2021 

 

26 

 

of oxidation reagent. Various ways have been made previously in the oxidation of pyrazoline 

derivatives with a variety of reagents. for example we quote, Zirconium nitrate XII, 

Palladium on carbon XIII, Manganese dioxide XIV for the preparation of pyrazolenines. The 

reaction of dimethyl sulfoxide with an electrophilic species to lead activated dimethyl sulfoxide 

has been extensivelydemoralized for the oxidation of pyrazoline derivatives XV. 

Nevertheless, numerous of these procedures are dependent upon specific downsides, for 

example, low yields, long reaction times, and toxicity because of the presence of certain 

components typified in the reagents used. So still there is requiring for improvement of new 

catalysts which overcome all these downsides. 

 

2. Results and discussion 

The addition of diazopropane 2 to di-substituted alkenes 1a-d, led to the exclusive formation 

of compounds pyrazolines 3a-d (Scheme 1). Remember, however, that obtaining 2-pyrazolines 

3 as products of this addition results from the prototropic isomerization of the corresponding 

1-pyrazolines 3’ which are very unstable XVI. 

Fast atom bombardment mass spectrometry and microanalysis showed that 2-pyrazolines 3 

were the consequence of the reaction of two equivalents of dipole. For this situation, alkylation 

of the carboxylic acids was completed utilizing diazopropane (Scheme 1) XVII. 
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Scheme 1: Synthesis of pyrazoline derivatives 3a-d 

 

We now have to establish the addition manner of diazopropane 2 with alkenes 1. Unambiguous 

proofs for the obtained pyrazoline regiochemistry arised from their NMR spectral data. 

However, regiochemical assignments of all adduct were deduced from their 1H-NMR spectra. 

In particular, the chemical shifts of C-3 in pyrazolines 3 are in excellent agreement with those 

usually obtained when this quaternary carbon is attached to nitrogen atom XVIII. 

 

As shown in Scheme 2, the Swern oxidation of pyrazoline derivatives 3a,b with 

dimethylsulfoxide gave good yields of pyrazolenine derivatives 4a,b XV.  
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Scheme 2 :Swern oxydation of pyrazolines 3a,b 

 

3. Conclusion 

In conclusion, we have described the preparation of new pyrazoline derivatives with total 

regioselectivity. The Swern oxidation, regarding the employ of extremely easy and economical 

reagents, allow the one-pot conversion of pyrazolines to a pyrazolenines into synthetically 

valuable.  

 

4. Experimental procedure 

4.1. General Methods 

All separation was performed by chromatography column used silica gel 60 (230–400 mesh). 

The IR spectral frequencies are given in cm-1. NMR spectra were determined in deuterium 

chloroform solutions at 300 and 75.5 MHz for proton and carbon thirteen NMR, respectively; 

chemical shifts have been reported in ppm and J values are given in hertz. 

4.2. 1,3-dipolar cycloaddition of 2-diazopropane 2with di-substituted alkenes 1 

To a solution of 1 mmol of alkenes 1a-c in 50 mL of anhydrous dichloromethane, cooled to – 

40 °C was added a solution of 2-diazopropane 2.6 M freshly prepared and stored at - 60 °C in 

diethyl ether. After adding four fractions, the red color of DAP persists and a thin layer 

chromatography of the reaction crude indicates the appearance of a new product. The solvent 

was removed and the crude product was purified by chromatography (SiO2; ethyl 

acetate/petroleum ether, 7:3) to afford compounds 3a-d. 

3-Isobutyryl-3,5,5-trimethyl-4,5-dihydro-3H-pyrazole-4-carboxylic acid phenylamide 3a 

Yield = 70%. M.p = 187 2 °C [ethanol] (white crystals). IR (KBr) max/cm-1: 1520 (C=N), 

3300 (NH). 1H NMR (300 MHz, (CD3)2CO)δppm 1.11 (d, 3H, CH3isop), 1.19 (d, 3H, CH3 

isop),1.44 (s, 3H, CH3), 1.54 (s, 3H, CH3), 2.30 (s, 1H, H4), 5.01 (m, 1H, Hisop), 7.05-7.41 (m, 

5H, Harom), 7.19 (s, 1H, NHCO), 10.01 (s, 1H, NH).13C NMR (75.5 MHz, (CD3)2CO) δppm: 

22.1, 22.3, 22.8, 29.1 (CH3), 60.4 (C4), 67.0 (C5), 93.4 (Cisop), 119.8-136.8 (Carom), 155.4 

(C3), 162.4 (C=O), 167.6 (C=O) Elemental analysis: C17H23N3O2 requires C, 67.75; H, 7.69; 

N, 13.94%; foundC, 67.70; H, 7.72; N, 13.90%. 

3-Isobutyryl-5,5-dimethyl-4,5-dihydro-1H-pyrazole-4-carboxylic acid (4-methoxy-

phenyl)-amide 3b 

Yield = 80%. M.p = 135 2 °C [ethanol] (white crystals). IR (KBr) max/cm-1: 1540 (C=N), 

3300 (NH). 1H NMR (300 MHz, (CD3)2CO)δppm 1.13 (d, 3H, CH3isop), 1.20 (d, 3H, CH3 isop), 

1.40 (s, 3H, CH3), 1.56 (s, 3H, CH3), 2.35 (s, 1H, H4), 3.79 (s, 3H, OCH3), 5.10 (m, 1H, Hisop), 

7.05-7.78 (m, 4H, Harom), 7.32 (s, 1H, NHCO), 10.11 (s, 1H, NH). 13C NMR (75.5 MHz, 

(CD3)2CO) δppm: 22.1, 22.2, 22.5, 29.0 (CH3), 55.0 (OCH3), 60.4 (C4), 66.8 (C5), 93.4 (Cisop), 

119.8-163.1 (Carom), 155.4 (C3), 161.4 (C=O), 167.7 (C=O) Elemental analysis: C17H23N3O3 

requires C, 64.33; H, 7.30; N, 13.24%; found C, 64.29; H, 7.32; N, 13.27%. 
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3-Isobutyryl-3,5,5-trimethyl-4,5-dihydro-3H-pyrazole-4-carboxylic acid phenylamide 3c 

Yield = 85%. M.p = 123 2 °C [ethanol] (white crystals). IR (KBr) max/cm-1: 1630 (N=N); 
1H NMR (300 MHz, (CD3)2CO) δppm: δppm: 1.11 (d, J = 6.3 Hz, 3H, CH3 isop), 1.14 (d, J = 6.3 

Hz,  3H, CH3 isop), 1.44 (s, 3H, CH3), 1.55 (s, 3H, CH3), 1.67 (s, 3H, CH3), 2.34 (s, 1H, H4), 

5.12 (m, J = 6.3 Hz,  1H, Hisop), 7.01-7.56 (m,  5H,  Harom). 13C NMR (75.5 MHz, (CD3)2CO) 

δppm: 21.8, 22.3, 22.6, 25.9, 29.2 (CH3), 60.4 (C4), 93.3 (Cisop), 97.7 (C3), 114.5-138.7 

(Carom), 167.3 (C=O), 169.5 (C=O). Elemental analysis: C17H23N3O2 requires C, 67.75; H, 

7.69; N, 13.94%; found C, 67.77; H, 7.65; N, 13.90%. 

3-Isobutyryl-3,5,5-trimethyl-4,5-dihydro-3H-pyrazole-4-carboxylic acid (4-methoxy-

phenyl)-amide 3d 

Yield = 85%. M.p = 119 2 °C [ethanol] (white crystals). IR (KBr) max/cm-1: 1633 (N=N);1H 

NMR (300 MHz, (CD3)2CO) δppm: 1.12 (d,J = 6.3 Hz, 3H, CH3 isop), 1.13 (d, J = 6.3 Hz,  3H, 

CH3 isop), 1.43 (s, 3H, CH3), 1.53 (s, 3H, CH3), 1.68 (s, 3H, CH3), 2.32 (s, 1H, H4), 3.73 (s, 3H, 

OCH3), 5.02 (m,J = 6.3 Hz,  1H, Hisop), 6.75 and 7.30 (d, J = 8.7 Hz,  4H,  Harom).13C NMR 

(75.5 MHz, (CD3)2CO) δppm: 21.9, 22.0, 22.6, 25.8, 29.1 (CH3), 55.4 (OCH3), 60.5 (C4), 93.0 

(Cisop), 97.4 (C3), 114.5-157.1 (Carom), 167.1 (C=O), 170.0 (C=O). Elemental analysis: 

C18H25N3O3 requires C, 65.23; H, 7.60; N, 12.68%; found C, 65.19; H, 7.63; N, 12.65%. 

4.3. Dehydrogenation of 2-Pyrazolines 

To a solution of five equivalents oxalyl chloride in 10 mL of dry dichloromethane, at -78 °C 

under anitrogen atmosphere, was includedseven equivalents dimethylsulfoxide. The mixture 

was stirred for 20 min, until effervescence ceased. To this solution, 1 mmole of 2-pyrazolines 

3a,b dissolved in 5 mL of dry dichoromethane was added dropwise, and the mixture was stirred 

for 15 min at -78 °C. 10 equivalents of triethylamine was then added and the mixture was left 

to warm to 0 °C for 20 min, while stirred.The mixture was diluted with 20 mL ofethyl diethyl  

and washed with saturated aqueous NH4Cl (3×20 mL). The organic layer was dried with 

MgSO4 and evaporated, and the residue was purified by chromatography (SiO2; ethyl 

acetate/petroleum ether, 1:4) to afford compounds 4a,b. 

5-Isobutyryl-3,3-dimethyl-3H-pyrazole-4-carboxylic acid phenylamide 4a 

Yield = 65%. M.p = 1112 °C [ethanol] (white crystals). IR (KBr) max/cm-1: 1630 (N=N), 

3200 (NH). 1H NMR (300 MHz, CDCl3)δppm 1.26 (d, J = 6.3 Hz, 6H, CH3isop), 1.35 (s, 6H, 

CH3),  5.47 (m, J = 6.3 Hz, 1H, Hisop), 7.17-7.74 (m, 5H, Harom), 7.36 (s, 1H, NHCO). 13C NMR 

(75.5 MHz, CDCl3) δppm: 22.3, 28.1 (CH3), 53.3 (C5), 93.4 (Cisop), 114.6-138.5 (Carom), 131.2 

(C3), 154.1 (C4), 164.7 (C=O), 178.4 (C=O).Elemental analysis: C16H19N3O2 requires C, 

67.35; H, 6.71; N, 14.73%; found C, 67.33; H, 6.69; N, 14.68%. 

5-Isobutyryl-3,3-dimethyl-3H-pyrazole-4-carboxylic acid (4-methoxy-phenyl)-amide 4b 

Yield = 85%. M.p = 1442 °C [ethanol] (white crystals). IR (KBr) max/cm-1: 1635 (N=N), 

3200 (NH).  1H NMR (300 MHz, CDCl3)δppm 1.21 (d, J = 6.3 Hz, 6H, CH3isop), 1.37 (s, 6H, 

CH3),  5.43 (m, J = 6.3 Hz, 1H, Hisop), 6.78 and 7.54 (d, J = 8.7 Hz, 4H, Harom), 7.33 (s, 1H, 

NHCO). 13C NMR (75.5 MHz, CDCl3) δppm: 22.4, 28.5 (CH3), 53.1 (C5), 53.1 (C5), 55.4 

(OCH3), 119.6-154.5 (Carom), 131.6 (C3), 151.2 (C4), 164.5 (C=O), 178.1 (C=O). Elemental 

analysis: C17H21N3O3 requires C, 64.74; H, 6.71; N, 13.32%; found C, C, 64.70; H, 6.69; N, 

13.35%. 
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